skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fisher, Joshua_B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract As we increasingly understand the impact that land management intensification has on local and global climate, the call for nature-based solutions (NbS) in agroecosystems has expanded. Moreover, the pressing need to determine when and where NbS should be used raises challenges to socioecological data integration as we overcome spatiotemporal resolutions. Natural and working lands is an effort promoting NbS, particularly emissions reduction and carbon stock maintenance in forests. To overcome the spatiotemporal limitation, we integrated life cycle assessments (LCA), an ecological carbon stock model, and a land cover land use change model to synthesize rates of global warming potential (GWP) within a fine-scale geographic area (30 m). We scaled National Agricultural Statistic Survey land management data to National Land Cover Data cropland extents to assess GWP of cropland management over time and among management units (i.e. counties and production systems). We found that cropland extent alone was not indicative of GWP emissions; rather, rates of management intensity, such as energy and fertilizer use, are greater indicators of anthropogenic GWP. We found production processes for fuel and fertilizers contributed 51.93% of GWP, where 33.58% GWP was estimated from N2O emissions after fertilization, and only 13.31% GWP was due to energy consumption by field equipment. This demonstrates that upstream processes in LCA should be considered in NbS with the relative contribution of fertilization to GWP. Additionally, while land cover change had minimal GWP effect, urbanization will replace croplands and forests where NbS are implemented. Fine-scale landscape variations are essential for NbS to identify, as they accumulate within regional and global estimates. As such, this study demonstrates the capability to harness both LCA and fine-resolution imagery for applications in spatiotemporal and socioecological research towards identifying and monitoring NbS. 
    more » « less
  2. Synopsis Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth’s ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.e., representing the ecosystem as an aggregate of its individuals or as a metaphorical or literal super-organ or organism. We review recent approaches to scaling-up plant water relations (hydraulics) concepts developed for organs and organisms to enable and interpret measurements at ecosystem-level. We focus on three community-scale versions of water relations traits that have potential to provide mechanistic insight into climate change responses of forest CO2 and H2O gas exchange and productivity: leaf water potential (Ψcanopy), pressure volume curves (eco-PV), and hydraulic conductance (Keco). These analyses can reveal additional ecosystem-scale parameters analogous to those typically quantified for leaves or plants (e.g., wilting point and hydraulic vulnerability) that may act as thresholds in forest responses to drought, including growth cessation, mortality, and flammability. We unite these concepts in a novel framework to predict Ψcanopy and its approaching of critical thresholds during drought, using measurements of Keco and eco-PV curves. We thus delineate how the extension of water relations concepts from organ- and organism-scales can reveal the hydraulic constraints on the interaction of vegetation and climate and provide new mechanistic understanding and prediction of forest water use and productivity. 
    more » « less
  3. Abstract Understanding tree transpiration variability is vital for assessing ecosystem water‐use efficiency and forest health amid climate change, yet most landscape‐level measurements do not differentiate individual trees. Using canopy temperature data from thermal cameras, we estimated the transpiration rates of individual trees at Harvard Forest and Niwot Ridge. PT‐JPL model was used to derive latent heat flux from thermal images at the canopy‐level, showing strong agreement with tower measurements (R2 = 0.70–0.96 at Niwot, 0.59–0.78 at Harvard at half‐hourly to monthly scales) and daily RMSE of 33.5 W/m2(Niwot) and 52.8 W/m2(Harvard). Tree‐level analysis revealed species‐specific responses to drought, with lodgepole pine exhibiting greater tolerance than Engelmann spruce at Niwot and red oak showing heightened resistance than red maple at Harvard. These findings show how ecophysiological differences between species result in varying responses to drought and demonstrate that these responses can be characterized by deriving transpiration from crown temperature measurements. 
    more » « less
  4. Abstract Terrestrial evapotranspiration is the second‐largest component of the land water cycle, linking the water, energy, and carbon cycles and influencing the productivity and health of ecosystems. The dynamics of ET across a spectrum of spatiotemporal scales and their controls remain an active focus of research across different science disciplines. Here, we provide an overview of the current state of ET science across in situ measurements, partitioning of ET, and remote sensing, and discuss how different approaches complement one another based on their advantages and shortcomings. We aim to facilitate collaboration among a cross‐disciplinary group of ET scientists to overcome the challenges identified in this paper and ultimately advance our integrated understanding of ET. 
    more » « less
  5. Summary A new proliferation of optical instruments that can be attached to towers over or within ecosystems, or ‘proximal’ remote sensing, enables a comprehensive characterization of terrestrial ecosystem structure, function, and fluxes of energy, water, and carbon. Proximal remote sensing can bridge the gap between individual plants, site‐level eddy‐covariance fluxes, and airborne and spaceborne remote sensing by providing continuous data at a high‐spatiotemporal resolution. Here, we review recent advances in proximal remote sensing for improving our mechanistic understanding of plant and ecosystem processes, model development, and validation of current and upcoming satellite missions. We provide current best practices for data availability and metadata for proximal remote sensing: spectral reflectance, solar‐induced fluorescence, thermal infrared radiation, microwave backscatter, and LiDAR. Our paper outlines the steps necessary for making these data streams more widespread, accessible, interoperable, and information‐rich, enabling us to address key ecological questions unanswerable from space‐based observations alone and, ultimately, to demonstrate the feasibility of these technologies to address critical questions in local and global ecology. 
    more » « less